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Abstract. We introduce various notions of well-posedness for a family of variational inequalities
and for an optimization problem with constraints defined by variational inequalities having a unique
solution. Then, we give sufficient conditions for well-posedness of these problems and we present an
application to an exact penalty method.
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1. Introduction

Let X be a topological space andE be a reflexive Banach space with dualE∗
andK be a nonempty convex closed subset ofE. For a functionf from X × E
to R we consider the following Optimization Problem with Variational Inequality
Constraints, denoted by OPVIC, also called generalized bilevel programming with
Equilibrium Constraints by Luo et al. [10]:

(OPVIC)

{
Minimize f (x, u)
subject to(x, u) ∈ X × E andu ∈ T (x).

T (x) is the solution set of the parametric variational inequality (VI)(x) defined by
the pair (A(x, .),K), A(x, .) being an operator from E toE∗, i.e. u∈ T (x) if and
only if u ∈ K and satisfies the inequality:

〈A(x, u), u − v〉 6 0 ∀v ∈ K.
Problems of this type have been investigated by many authors (Marcotte and Zhu
[11]; Outrata [14]; Ye et al., [16]; Luo et al. [10]; Lignola and Morgan [9]) mostly in
the setting of finite dimensional spaces. Aim of this paper is to introduce a concept
of well-posedness for OPVIC which can be useful for numerical purposes. More
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precisely, in line with the concepts of well-posedness given in Optimization (Ty-
chonov [15]; Dontchev and Zolezzi [4]); in Game Theory (Cavazzuti and Morgan
[3]; Margiocco et al. [12]) and in Bilevel Optimization (Morgan [13]), we introduce
the notion of ‘approximating sequences’ for OPVIC. Then, we determine classes of
problems which guarantee the strong convergence of such sequences to a solution
of the original problem. So any algorithm or method which produces ‘approximat-
ing sequences’ allows us to approach a solution. We shall see in Section 3 that there
is a strong connection between well-posedness for OPVIC and ‘parametric well-
posedness’ of the family of variational inequalities{V I (x), x ∈ X} (see Definition
2.2). Thus, in Section 2 we define parametrically well-posed families of variational
inequalities, we give classes of operators ensuring such a property and we invest-
igate the relationship with other possible concepts of parametric well-posedness.
Then in Section 3 we give sufficient condition for well-posedness of OPVIC and we
present an application to an exact penalty method for OPVIC (Example 3.4). For
all the definitions related to Variational Inequalities (monotonicity, hemicontinuity,
...), we refer to Baiocchi and Capelo [2]).

We point out that, in the following, we deal only with variational inequalities
having a unique solution; the case of a non unique solution will be considered
separately.

2. Parametrically Well-posed Variational Inequalities

In this section, forx ∈ X, we consider the parametric variational inequality:

(V I (x))

{
Findu ∈ K such that:

〈A(x, u), u − v〉 6 0 ∀v ∈ K,
and we assume that, for allx ∈ X, (V I )(x) has a unique solution.

As observed by Harker and Pang [7] and by Marcotte and Zhu [11], the problem
(V I )(x) can be reformulated in the following way:

P(x)

{
find u ∈ K such that:
g(x, u) = 0 and infv∈K g(x, v) = g(x, u),

where

g(x, v) = Sup
w∈K
〈A(x, v), v − w〉. (1)

The ‘gap’ functiong, introduced by Auslender [1], which provides an optimization
formulation for the problem(V I )(x), is used in various numerical methods for
solving variational inequalities (see, for example, Harker and Pang [7]; Marcotte
and Zhu [11]). Thus, assuming that the problem(V I )(x) has at least a solution, it
is natural to give the following definitions:
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DEFINITION 2.1. Letx ∈ X and(xn) be a sequence converging tox. A sequence
(un) is anapproximating sequencefor the problem(V I )(x) (with respect to(xn))
if un ∈ K for anyn ∈ N and limn→∞ g(xn, un) = 0, that is there exists a sequence
of positive numbers(εn) converging to zero such that:

〈A(xn, un), un − v〉 6 εn ∀v ∈ K.
Now, let us consider the family(V I ) = {(V I )(x), x ∈ X}.

DEFINITION 2.2. The family(V I ) is parametrically strongly well-posed if:
(i) there exists a unique solution̄ux to (V I )(x), for all x ∈ X;
(ii) for all x ∈ X and for all (xn) converging tox, every approximating se-

quence for the problem(V I )(x) (w.r. to (xn)) strongly converges tōux.

Now, we investigate the connection between the concept of parametric well-
posedness given by Definition 2.2 and the diameter of the set

T (x, ε) = {u ∈ K : 〈A(x, u), u − v〉 6 ε ∀v ∈ K} for ε > 0

as defined in Lignola and Morgan [8] in which continuity properties have been
studied. Unfortunately, differently from what happens in Optimization (Dontchev
and Zolezzi [4]), in general parametrically well- posedness is not equivalent to the
convergence of the diameters ofT (x, ε) to 0. In fact only one implication holds
and more precisely:

PROPOSITION 2.3.If the family(V I ) is parametrically strongly well-posed then
T (x, ε) 6= ∅, for everyε > 0 and everyx ∈ X, and limn→∞ diamT (xn, εn) = 0,
for all (xn) converging tox and all (εn) converging to 0.

Proof.Let (V I ) be parametrically strongly well-posed andg be the gap function
as defined in (1). Assume that there existx ∈ X, (xn) converging tox and (εn)
converging to 0 such that limn→∞ diamT (xn, εn) > 0. Then one can find a positive
numbera and two sequences inT (xn, εn), (un) and(vn), such that

‖un − vn‖ > a for all n. (2)

Being (un) and(vn) two approximating sequences for the problem(V I )(x) (w.r.
to (xn)), they have to converge to the unique solution for(V I )(x) in contradiction
with (2). 2
When the operatorA does not depend on the parameterx we obtain a stronger
result:

PROPOSITION 2.3 bis. LetA be a monotone and hemicontinuous operator from
E toE∗. Then(V I ) is well-posed if and only ifT (ε) 6= ∅ for anyε > 0 andlimε→0

diamT (ε) = 0.
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Proof.The following Lemma is well known (Kinderlehrer and Stampachia [6];
Baiocchi and Capelo [2]), however, we shall give its proof for sake of complete-
ness.

MINTY’S LEMMA. LetA be a map fromE to E∗ andK be a subset ofE. If
A is monotone, then any solution of the variational inequality

〈Au, u − v〉 6 0 ∀v ∈ K.
is also a solution of the inequality

〈Av, u − v〉 6 0 ∀v ∈ K. (3)

Conversely, ifA is hemicontinuous andK is convex then any solutionu inK of (3)
is also a solution to(V I ).

Proof.The first part of the Lemma is a trivial consequence of the monotonicity
of A. Conversely, letu ∈ K be a solution of (3) andv be an arbitrary vector ofK.
The vector

vt = tv + (1− t)u,0< t < 1,

belongs toK for all t , sinceK is convex. Hence, by (3),

〈Avt , u− vt〉 6 0,

that is to say,

〈Avt , u− v〉 6 0.

Therefore, ift converges to 0, we find by the hemicontinuity ofA,

〈Au, u − v〉 6 0.

Thenu satisfies(V I ). 2
Proof.Let (un) be an approximating sequence for(V I ), that is:

un ∈ K and〈Aun, un − v〉 6 εn ∀v ∈ K
andεn→ 0.

If lim ε→0 diamT (ε) = 0, for all η > 0 there existsm ∈ N such that: diam
T (εn) < η for all n > m. Hence‖up − uq‖ < η for all p, q > m and(un) is a
Cauchy sequence, so it converges toū ∈ K. BeingA a monotone operator,

〈Av, ū − v〉 = lim
n→∞〈Av, un − v〉

6 lim inf
n→∞ 〈Aun, un − v〉 6 0 ∀v ∈ K
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and, from Minty’s Lemma,̄u is a solution for(V I ).
Since every approximating sequence is convergent, it is easy to prove that there

exists a unique solution for(V I ). 2
Now, we suppose that the variational inequalityV I (x) arises from a minimiza-

tion problem:

(MP)(x) inf
u∈K h(x, u)

whereh : X × E→ R ∪ {+∞}.
In Zolezzi [17] the following definition is given:

DEFINITION 2.4. Letx belong toX. The problem(MP)(x) is strongly well-
posed if:

(i) inf u∈k h(x′, u) > −∞ for all x′ ∈ X;
(ii) there exists a uniquēux ∈ argminh(x, .);
(iii) for every sequence(xn) converging tox and every sequence(un) in E such

that h(xn, un) − infu∈K h(xn, u) → 0 asn → +∞, the sequence(un)
strongly converges tōux

PROPOSITION 2.5.For all x ∈ X let h(x, .) be a convex bounded from below
and Gateaux differentiable function onK. The family of variational inequalities
defined by:{

findu ∈ K such that

〈h′u(x, u), u − v〉 6 0 ∀v ∈ K (4)

is parametrically strongly well-posed whenever the problem(MP)(x) is strongly
well-posed (in the sense of Definition 2.4) for everyx ∈ X.

Proof. Let x ∈ X, (xn) be a sequence converging tox and(un) be an approx-
imating sequence (w.r. to(xn)) for the problem defined by (4). Then there exists a
sequence(εn) converging to zero such that:

〈h′u(xn, un), un − v〉 6 εn ∀v ∈ K.
Beingh(xn, .) a convex function we have:

h(xn, un)− h(xn, v) 6 〈h′u(xn, un), un − v〉 6 εn
andh(xn, un) 6 infv∈K h(xn, v)+ εn.

From (iii) in Definition 2.4, the sequence(un) has to converge tōux = argmin
h(x, .) = T (x). 2
Conversely we have:
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PROPOSITION 2.6. Let K be bounded and, for allx ∈ X, h(x, .) be a lower
semicontinuous, bounded from below and Gateaux differentiable function onK.
Then the problem(MP)(x) is strongly well-posed in the sense of Definition 2.4 for
all x ∈ X whenever the family defined by (4) is parametrically strongly well-posed
and for allx ∈ X argminh(x, .) 6= ∅.

Proof.Assume that(V I ) is parametrically strongly well-posed. Letx ∈ X, (xn)
be a sequence converging tox and let(un) be a sequence satisfying the condition
given in (iii) of Definition 2.4. That is, there exists a sequence(εn) decreasing to
zero such that

h(xn, un) 6 h(xn, u)+ εn for all u ∈ K.
From Ekeland Theorem (Ekeland and Temam [5]), there existsūn ∈ K such that

‖un − ūn‖ 6 √εn
and

〈h′u(xn, ūn), ūn − u〉 6
√
εn‖ūn − u‖ for all u ∈ K.

Therefore〈h′u(xn, ūn), ūn − u〉 6
√
εn diam(K) for all u ∈ K and (ūn) is an

approximating sequence for the variational inequality(V I )(x) (w.r. to (xn)). The
family (V I ) being parametrically well-posed,(ūn) must converge toux = T (x)

and the same occurs for the sequence(un). In order to prove (ii) it is sufficient to
consider the sequence defined byun = ūx ∈ argminh(x, .). Then, from the first
part,(un) converges toux and (iii) is satisfied. 2
COROLLARY 2.7. If, for all x ∈ X, h(x, .) is a convex, bounded from below and
Gateaux differentiable function onK which is assumed to be also bounded, then
the problem(MP)(x) is strongly well-posed (in the sense of Definition 2.4) for any
x ∈ X if and only if the family(V I ) is parametrically strongly well-posed.

Now, we investigate classes of families parametrically well-posed and we start
with the finite dimensional case.

PROPOSITION 2.8.LetE be a finite dimensional space and letA be an operator
onX × K such thatA(x, .) is monotone and hemicontinuous for allx ∈ X and
A(., u) is continuous for allu ∈ K. Then(V I ) is parametrically well-posed if and
only if (V I )(x) has a unique solution for allx ∈ X.

Proof. Assume that(V I )(x) has a unique solutionux for all x ∈ X and the
family (V I ) is not parametrically well-posed. Then there existx ∈ X, a sequence
(xn) converging tox and an approximating sequence(vn) (w.r. to (xn)) which does
not converge toux . Then one can find a sequence(εn) converging to zero such that:
〈A(xn, vn), vn − y〉 6 εn for all y ∈ K.

Let αn = 1
‖vn−ux‖ andzn = ux + αn(vn − ux).
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Assume that the sequence(vn) is not bounded, so that there exists a subsequence
still denoted by(vn) such that‖vn‖ → +∞. Since(zn) is bounded andzn ∈ K,
there exists a pointz ∈ K, z 6= ux , towards which a subsequence(zk)k converges.

For ally ∈ K it results:

〈A(xk, y), z − y〉 = 〈A(xk, y), z − zk〉 + 〈A(xk, y), zk − y〉
6 ‖A(xk, y)‖‖z − zk‖ + 〈A(xk, y), ux − y〉 + 〈A(xk, y), zk − ux〉
= ‖A(xk, y)‖‖z − zk‖ + (1− αk)〈A(xk, y), ux − y〉 + αk〈A(xk, y),
vk − y〉.

BeingA(xk, .) monotone, we have:

〈A(xk, y), vk − y〉 6 〈A(xk, vk), vk − y〉 6 εk
and:〈A(xk, y), z− y〉 6 ‖A(xk, y)‖‖z− zk‖+ εkαk + (1−αk)〈A(x, ux), ux − y〉.
Being lim supk→∞〈A(xk, ux), ux − y〉 6 〈A(x, ux), ux − y〉 6 0 we obtain:

〈A(x, y), z − y〉 6 lim sup
k→∞

(1− αk)〈A(xk, ux), ux − y〉 6 0 for all y ∈ K;

From Minty’s Lemma, the pointz solves(V I )(x)which contradicts the uniqueness
of the solution. So(vn) is bounded and, for some subsequence,(vn) converges to
a pointvx which has to solve the variational inequality(V I )(x). Sovx = ux and
this is a contradiction. 2
In order to obtain a class of operators which guarantees the parametrical strong
well-posedness, we consider operatorsA from X × E onE∗ which arestrongly
monotonein the second variable, uniformly with respect tox, that is: there exists
α > 0 such that

〈A(x, u) − A(x, v), u − v〉 > α‖u− v‖2 for all u and allx ∈ X.
Let us recall that an operatorA from E to E∗ is strongly monotoneonK if there
existsα > 0 such that

〈Au − Av, u− v〉 > α‖u− v‖2 for all u andv ∈ K.
PROPOSITION 2.9.LetA be an operator strongly monotone in the second vari-
able, uniformly with respect tox, such that, for allx ∈ X, A(x, .) is hemicon-
tinuous on a bounded convex closed subsetK of E, and, for allu ∈ E,A(·, u) is
continuous fromX to (E∗, s). Then(V I ) is parametrically strongly well-posed.

Proof.BeingK a bounded set, for allx ∈ X and every sequence(xn) converging
to x, every approximating sequence(un) (w.r. to (xn)) has a subsequence, still
denoted by(un), weakly converging toux = T (x). Then we have:

α‖un − ux‖2 6 εn + 〈A(xn, ux), un − ux〉
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and(un) is strongly convergent toux. 2
When the operatorA does not depend on the parameterx we obtain:

PROPOSITION 2.9 bis. Assume thatA is monotone and hemicontinuous onK, a
closed convex subset ofE. Then(V I ) is strongly well-posed if there exists a point
u0 ∈ K and a functionc : D → [0,+∞[ (whereD is a set of non negative
numbers such that0 ∈ D) with the following properties:c(0) = 0 andc(tn)→ 0
impliestn→ 0 and such that:

〈Av, u0 − v〉 + c(‖u0 − v‖) 6 0 ∀v ∈ K. (5)

Consequently, ifA is a strongly monotone and hemicontinuous operator, then(V I )

is strongly well-posed.
Proof.From (5) and Minty’s Lemma it follows thatu0 is a solution to(V I ) and

any solutionū for (V I )must coincide withu0 since:

06 c(‖u0 − ū‖) 6 〈Aū, ū− u0〉 6 0.

If (un) is an approximating sequence for(V I ) it results:

06 lim sup
n→∞

c(‖un − u0‖) 6 lim sup
n→∞

〈Aun, un − u0〉 = 0

and(un) strongly converges tou0.
Now, letA be a strongly monotone and hemicontinuous operator and letα > 0

such that

〈Au − Av, u− v〉 > α‖u− v‖2 for all v ∈ E.
Letu0 be the unique solution to(V I ), then〈Av, u0−v〉+α‖v−u0‖2 6 〈Au0, u0−
v〉 6 0 ∀v ∈ K, so there exist the functionc(t) = αt2 andu0 ∈ K satisfying (5).

3. Well-posed OPVIC

In this section we consider the problem OPVIC, presented in the introduction, with
f bounded from below onX ×K.

First of all, let us define a concept of approximating sequence for OPVIC which
generalizes the concept used in Morgan [13] for Optimization problems with con-
straints defined by a parametric minimum problem (also called Bilevel Program-
ming problems or Stackelberg problems).

DEFINITION 3.1. A sequence((xn, un)) is an approximating sequence for the
problem OPVIC if:

(i) lim inf
n→∞ f (xn, un) 6 inf

(x,u)∈X×E,u∈T (x)
f (x, u);

(ii)un ∈ T (xn, εn) with lim
n→∞ εn = 0.
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Then two natural concepts of well-posedness for OPVIC arise:

DEFINITION 3.2. The problem OPVIC is generalized well-posed if:
(i) (V I )(x) has a unique solution for everyx ∈ X;
(ii) OPVIC has at least a solution;
(iii) any approximating sequence((xn, un)) for OPVIC has a subsequence con-

vergent inX × (E, s) to a solution to OPVIC.

DEFINITION 3.3. The problem OPVIC is strongly well-posed if:
(i) OPVIC has a unique solution(x̄, ux̄);

(ii) any approximating sequence((xn, un)) for OPVIC converges to(x̄, ux̄) in
X × (E, s).

Taking into account Section 2, we are able to determine classes of problems
(OPVIC) which are generalized or strongly well-posed. More precisely, we have:

THEOREM 3.4. Assume thatX is sequentially compact,f is lower semicontinu-
ous onX × (E, s), the family(V I ) is parametrically strongly well-posed and
OPVIC admits at least a solution. Then the problem OPVIC is generalized well-
posed.

Proof. Let ((xn, un)) be an approximating sequence for OPVIC. Thenun ∈
T (xn, εn) with limn→∞ εn = 0. BeingX sequentially compact, there exists a sub-
sequence(xnk ) converging tox0 ∈ X. Then(unk ) is an approximating sequence
for the problem(V I )(x0) (with respect to(xnk ) and, since(V I ) is parametrically
strongly well-posed,(unk ) strongly converges toux0 = T (x0), the unique solution
of (V I )(x0). Moreover, from Definition 3.1, we have:

lim inf
n→∞ f (xn, un) 6 inf

(x,u)=∈X×E,u∈T (x)
f (x, u) = inf

x∈X f (x, T (x)).

Then:

f (x0, ux0) 6 lim inf
k→∞ f (xnk , unk ) 6 inf

x∈X f (x, T (x))

and(x0, ux0) is a solution to OPVIC. 2
THEOREM 3.5. Assume thatX is sequentially compact,f is lower semicontinu-
ous onX × (E, s), the family(V I ) is parametrically strongly well- posed and
OPVIC admits a unique solution(x̄, ux̄). Then the problem OPVIC is strongly
well-posed.

Proof. Let ((xn, un)) be an approximating sequence for OPVIC. Argueing
as in Theorem 3.1 there exists a subsequence((xnk , unk )) of ((xn, un)) such that
((xnk , unk )) converges to(x̄, ux̄). Since any converging subsequence of the approx-
imating sequence((xn, un)) is convergent to(x̄, ux̄) in X × (E, s) it is easy to
prove that the whole sequence((xn, un)) converges to(x̄, ux̄). 2
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Consequently, assuming thatX is sequentially compact, we infer the following
corollaries:

COROLLARY 3.6. Let E be a finite dimensional space. Assume thatA is an
operator onX×K such that for allx ∈ X A(x, .) is monotone and hemicontinuous
and, for all u ∈ K, A(., u) is continuous. Letf be a lower semicontinuous real
valued function onX × E. Finally, assume that(V I )(x) has a unique solution for
all x ∈ X. Then the problem OPVIC defined by:

(OPVIC)

{
Minimize f (x, u)
subject to(x, u) ∈ X × E andu ∈ T (x).

is generalized well-posed. If, moreover, it admits a unique solution it is also well-
posed.

COROLLARY 3.7. Letf be a lower semicontinuous real valued function onX×
(E, s). Assume thatA is an operator strongly monotone in the second variable,
uniformly with respect tox, such that for allx ∈ X A(x, .) is hemicontinuous on
a bounded closed convex subsetK of E and, for allu ∈ K, A(., u) is continuous
from X to (E∗, s). Then the problem OPVIC is generalized well-posed and, if it
has a unique solution, it is also strongly well-posed.

When the operatorA does not depend onx we obtain:

COROLLARY 3.8. Let f be a lower semicontinuous real valued function on
X × (E, s). Assume thatA is a strongly monotone and hemicontinuous oper-
ator onK or, more generically, that there exists a pointu0 ∈ K and a function
c : D → [0,+∞[ as in Proposition 2.9 bis such that (5) is satisfied. Then the
problem OPVIC is generalized well-posed and, if it has a unique solution, it is also
strongly well-posed.

EXAMPLE 3.9. As pointed out in the Introduction, any method which produces
approximating sequences for OPVIC allows to approach a solution. As an example
we show that the sequence((xn, yn)), generated by the exact penalty method,
described by Marcotte and Zhu [11], is an approximating sequence for OPVIC.

In fact, following Marcotte and Zhu, we consider the penalized problem

(Pα)

{
Minimize f (x, u)+ αg(x, u)
subject to(x, u) ∈ X × E,

whereg is the gap function defined in (1) and we suppose that, for allα > 0, (Pα)
has at least a solution.

Let (αn) be an increasing sequence of positive numbers and(xn, yn) be a solu-
tion to the problem(Pαn). From Lemma 1 in Marcotte and Zhu we have:

(1) f (xn, yn) 6 inf(x,u)∈X×E f (x, u) 6 inf(x,u)∈X×E,u∈T (x) f (x, u);
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(2) g(xn+1, yn+1) 6 g(xn, yn)
which imply i) and ii) of Definition 3.1 so((xn, yn)) is an approximating sequence
for OPVIC.

Then, whenever OPVIC is well-posed (respectively generalized well-posed) we
can deduce that the sequence((xn, yn)) converges to the solution (respectively that
a subsequence of((xn, yn)) converges to a solution).
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