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Abstract. We introduce various notions of well-posedness for a family of variational inequalities
and for an optimization problem with constraints defined by variational inequalities having a unique
solution. Then, we give sufficient conditions for well-posedness of these problems and we present an
application to an exact penalty method.
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1. Introduction

Let X be a topological space anfl be a reflexive Banach space with duft
and K be a nonempty convex closed subsettofFor a functionf from X x E

to R we consider the following Optimization Problem with Variational Inequality
Constraints, denoted by OPVIC, also called generalized bilevel programming with
Equilibrium Constraints by Luo et al. [10]:

Minimize f(x, u)

(OPVIC) { subject to(x, u) € X x E andu € T (x).

T (x) is the solution set of the parametric variational inequality (Wi {efined by
the pair A(x, .), K), A(x, .) being an operator from E t6*, i.e. u € T (x) if and
only if u € K and satisfies the inequality:

(A(x,u),u —v) <0 Vvek.

Problems of this type have been investigated by many authors (Marcotte and Zhu
[11]; Outrata [14]; Ye et al., [16]; Luo et al. [10]; Lignola and Morgan [9]) mostly in
the setting of finite dimensional spaces. Aim of this paper is to introduce a concept
of well-posedness for OPVIC which can be useful for numerical purposes. More
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precisely, in line with the concepts of well-posedness given in Optimization (Ty-
chonov [15]; Dontchev and Zolezzi [4]); in Game Theory (Cavazzuti and Morgan
[3]; Margiocco et al. [12]) and in Bilevel Optimization (Morgan [13]), we introduce
the notion of ‘approximating sequences’ for OPVIC. Then, we determine classes of
problems which guarantee the strong convergence of such sequences to a solution
of the original problem. So any algorithm or method which produces ‘approximat-
ing sequences’ allows us to approach a solution. We shall see in Section 3 that there
is a strong connection between well-posedness for OPVIC and ‘parametric well-
posedness’ of the family of variational inequalitids/ (x), x € X} (see Definition
2.2). Thus, in Section 2 we define parametrically well-posed families of variational
inequalities, we give classes of operators ensuring such a property and we invest-
igate the relationship with other possible concepts of parametric well-posedness.
Then in Section 3 we give sufficient condition for well-posedness of OPVIC and we
present an application to an exact penalty method for OPVIC (Example 3.4). For
all the definitions related to Variational Inequalities (monotonicity, hemicontinuity,
...), we refer to Baiocchi and Capelo [2]).

We point out that, in the following, we deal only with variational inequalities
having a unique solution; the case of a non unique solution will be considered
separately.

2. Parametrically Well-posed Variational Inequalities

In this section, forr € X, we consider the parametric variational inequality:

Findu € K such that:

VI
Vi) {(A(x, W.u—v) <0 Vvek,
and we assume that, for alle X, (VI)(x) has a unique solution.

As observed by Harker and Pang [7] and by Marcotte and Zhu [11], the problem
(VI)(x) can be reformulated in the following way:

P() find u € K such that
X
g(-xa I/l) = O and ianEK g(-xa v) == g(-xa I/l),

where

g(x,v) = SURA(x, v), v — w). Q)

wekK

The ‘gap’ functiong, introduced by Auslender [1], which provides an optimization
formulation for the problem(VI)(x), is used in various numerical methods for
solving variational inequalities (see, for example, Harker and Pang [7]; Marcotte
and Zhu [11]). Thus, assuming that the probléWY)(x) has at least a solution, it

is natural to give the following definitions:
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DEFINITION 2.1. Letx € X and(x,) be a sequence convergingtoA sequence
(u,) is anapproximating sequender the problem(V I)(x) (with respect ta(x,))

if u, € K foranyn € Nand lim,_,», g(x,, u,) = 0, that is there exists a sequence
of positive numbersge,) converging to zero such that:

(A(xy, up),u, —v) <e, VYveKk.
Now, let us consider the familyV 1) = {(VI)(x), x € X}.

DEFINITION 2.2. The family(V I) is parametrically strongly well-posed if:
(i) there exists a unique solutian, to (VI)(x), forallx € X;
(i) for all x € X and for all (x,) converging tox, every approximating se-
quence for the problertV I')(x) (w.r. to (x,)) strongly converges ta,.

Now, we investigate the connection between the concept of parametric well-
posedness given by Definition 2.2 and the diameter of the set

Tx,e)={ueK:{Alx,u),u —v)<e YveK}fore>0

as defined in Lignola and Morgan [8] in which continuity properties have been
studied. Unfortunately, differently from what happens in Optimization (Dontchev
and Zolezzi [4]), in general parametrically well- posedness is not equivalent to the
convergence of the diameters Bfx, ¢) to 0. In fact only one implication holds
and more precisely:

PROPOSITION 2.3.1f the family(V I is parametrically strongly well-posed then
T (x,e) # @, for everye > 0and everyx € X, andlim,,_, ., diam7T(x,, ¢,) = 0,
for all (x,) converging tor and all (¢,) converging to O.

Proof.Let (VI) be parametrically strongly well-posed agatle the gap function
as defined in (1). Assume that there exise X, (x,) converging tox and (e,)
converging to 0 such that lign. o, diam? (x,,, ¢,) > 0. Then one can find a positive
numbera and two sequences if(x,, ¢,), (u,) and(v,), such that

llu, — v, || > a for all n. 2

Being (u,) and (v,) two approximating sequences for the proble€vv)(x) (w.r.
to (x,,)), they have to converge to the unique solution({@i/)(x) in contradiction
with (2). a

When the operatoA does not depend on the parametewe obtain a stronger
result:

PROPOSITION 2.3 bid_et A be a monotone and hemicontinuous operator from
E to E*. Then(V ) is well-posed if and only i (¢) # @ for anye > Oandlim,_q
diamT (¢) = 0.
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Proof. The following Lemma is well known (Kinderlehrer and Stampachia [6];
Baiocchi and Capelo [2]), however, we shall give its proof for sake of complete-
ness.

MINTY’'S LEMMA. Let A be a map fromE to E* and K be a subset of. If
A is monotone, then any solution of the variational inequality

(Au,u —v) <0 VYveKk.
is also a solution of the inequality
(Av,u —v) <0 Vv eKk. 3

Conversely, ifA is hemicontinuous and is convex then any solutianin K of (3)
is also a solution tqV I).

Proof. The first part of the Lemma is a trivial consequence of the monotonicity
of A. Conversely, let: € K be a solution of (3) and be an arbitrary vector ok .
The vector

v, =tv+Q—-—0Hu,0<t <1,
belongs toK for all ¢, sincek is convex. Hence, by (3),
(Av;, u —v,) <0,
that is to say,
(Av;,u —v) <0.
Therefore, ift converges to 0, we find by the hemicontinuity Af
(Au,u —v) < 0.

Thenu satisfiegVI). O

Proof. Let («,) be an approximating sequence {af7), that is:
u, € K and(Au,,u, —v) <eg, VYvek

andg, — O.

If lim,_o diaml'(¢) = O, for all > 0O there existsn € N such that: diam
T(e,) < nforalln > m.Hencellu, —u,ll < nforall p,g > m and(u,) is a
Cauchy sequence, so it convergea to K. Being A a monotone operator,

(Av, i —v) = lim {(Av, u, — v)

n—oo

<liminf{Au,,u, —v) <0 VvekK

n—oo
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and, from Minty’s Lemmai: is a solution forn(VI).
Since every approximating sequence is convergent, it is easy to prove that there
exists a unique solution fqV' I). O

Now, we suppose that the variational inequality (x) arises from a minimiza-
tion problem:

(MP)(x) in1f< hix,u)

whereh : X x E — R U {+00}.
In Zolezzi [17] the following definition is given:

DEFINITION 2.4. Letx belong toX. The problem(M P)(x) is strongly well-
posed if:
) inf,eh(x',u) > —coforallx’ € X;
(ii) there exists a unique, € argmini(x, .);
(iii) for every sequencéx,) converging tor and every sequenda,,) in E such
that h(x,, u,) — inf,cx h(x,, u) — 0 asn — +oo, the sequenceu,)
strongly converges to,

PROPOSITION 2.5.For all x € X let h(x,.) be a convex bounded from below
and Gateaux differentiable function dfi. The family of variational inequalities
defined by:

findu € K such that

(h (x,u),u—v) <0 Vvek (4)

is parametrically strongly well-posed whenever the probléP)(x) is strongly
well-posed (in the sense of Definition 2.4) for every X.

Proof.Let x € X, (x,) be a sequence convergingiand («,) be an approx-
imating sequence (w.r. tox,,)) for the problem defined by (4). Then there exists a
sequencee,) converging to zero such that:

(h! (Xn, up), u, —v) <&, YveK.
BeingX(x,, .) a convex function we have:

h(xp, ) — h(x, v) < (R (X, ), Uy — V) < &g
andh(x,, u,) <inf,cx h(x,, v) + &,.

From (iii) in Definition 2.4, the sequenda, ) has to converge td, = argmin
h(x,.) =T (x). O

Conversely we have:



62 M.B. LIGNOLA AND J. MORGAN

PROPOSITION 2.6.Let K be bounded and, for alt € X, h(x,.) be a lower
semicontinuous, bounded from below and Gateaux differentiable functidn. on
Then the probleniM P)(x) is strongly well-posed in the sense of Definition 2.4 for
all x € X whenever the family defined by (4) is parametrically strongly well-posed
and for allx € X argmini(x, .) # @.

Proof. Assume thatV 1) is parametrically strongly well-posed. Lete X, (x,)
be a sequence convergingit@and let(u,) be a sequence satisfying the condition
given in (iii) of Definition 2.4. That is, there exists a sequeKgg decreasing to
zero such that

h(x,, u,) < h(x,,u)+¢,forallu € K.

From Ekeland Theorem (Ekeland and Temam [5]), there ekjsts K such that

Hun - I’_ln” < \/811
and
(B, (xp, i), Uy — u) < Ve, i, —ull foralu e K.

Therefore(h! (x,, i), u, — u) < /¢, diam(K) for all u € K and (iz,) is an
approximating sequence for the variational inequaliyf ) (x) (w.r. to (x,)). The
family (VI) being parametrically well-posedi,) must converge ta, = T (x)
and the same occurs for the sequengg. In order to prove (ii) it is sufficient to
consider the sequence definediy= i, € argminh(x,.). Then, from the first
part, (u,) converges ta, and (iii) is satisfied. a

COROLLARY 2.7. If, forall x € X, h(x, .) is a convex, bounded from below and
Gateaux differentiable function oki which is assumed to be also bounded, then
the problem(M P)(x) is strongly well-posed (in the sense of Definition 2.4) for any
x € X if and only if the familyV I) is parametrically strongly well-posed.

Now, we investigate classes of families parametrically well-posed and we start
with the finite dimensional case.

PROPOSITION 2.8.Let E be a finite dimensional space and lebe an operator
on X x K such thatA(x, .) is monotone and hemicontinuous for alle X and
A(., u) is continuous for alk € K. Then(VI) is parametrically well-posed if and
only if (VI)(x) has a unique solution for alk € X.

Proof. Assume that(VI)(x) has a unique solution, for all x € X and the
family (V1) is not parametrically well-posed. Then there exist X, a sequence
(x,) converging tor and an approximating sequen@g) (w.r. to (x,)) which does
not converge ta,. Then one can find a sequeneg) converging to zero such that:
(A(x,, vp), v, —y) < g, forally € K.

Leta, = andz, = u, + a, (v, — uy).

[lon—uxll



WELL-POSEDNESS FOR OPTIMIZATION PROBLEMS 63

Assume that the sequen@g) is not bounded, so that there exists a subsequence
still denoted by(v,) such thatjv,|| — +oo. Since(z,) is bounded and, € K,
there exists a poirg € K, z # u,, towards which a subsequengg), converges.

For ally € K it results:

(A, ¥), 2= ¥) = (A, ¥), 2 — 2k) + (A, ¥), 26 — )
< NAGk, Wz = zill + (A, ¥), uxe — y) + (A, ), 2x — uy)
= [[AGk, MIllz — zill + (L — o) (A(xk, y), e — y) + ax(A(xk, y),
Vk — ).

Being A (x;, .) monotone, we have:
(A, ¥), v —y) < (A, v, v — y) < &

and:(A(Xk, y)’ Z— y) g ||A(Xk, y)””Z _Zk” +8kO{k + (1_ak)<A(-x’ Mx)a Uy — y)
Being lim SUR_ oo (A Xk, uy), uy — y) < (A(x, u,), u, —y) < 0 we obtain:

(A(x,y),z—y) <limsup(l — ap)(A(xx, uy), u, —y) <0 forally e K;
k—o00
From Minty’s Lemma, the poing solves(V I') (x) which contradicts the uniqueness
of the solution. Sqv,) is bounded and, for some subsequerieg) converges to
a pointv, which has to solve the variational inequality 7)(x). Sov, = u, and
this is a contradiction. O

In order to obtain a class of operators which guarantees the parametrical strong
well-posedness, we consider operatdrérom X x E on E* which arestrongly
monotonen the second variable, uniformly with respectiothat is: there exists

« > 0 such that

(A(x,u) — A(x,v),u —v) > allu —v|?forallu and allx € X.

Let us recall that an operater from E to E* is strongly monotonen K if there
existsae > 0 such that

(Au — Av,u —v) > allu — v||* for all « andv € K.

PROPOSITION 2.9.Let A be an operator strongly monotone in the second vari-

able, uniformly with respect te, such that, for allx € X, A(x,.) is hemicon-

tinuous on a bounded convex closed sulisetf E, and, for allu € E, A(-, u) is

continuous fronX to (E*, s). Then(V 1) is parametrically strongly well-posed.
Proof.Being K a bounded set, for all € X and every sequencg, ) converging

to x, every approximating sequence,) (w.r. to (x,)) has a subsequence, still

denoted byu,), weakly converging ta, = T (x). Then we have:

2
O(HM,, - ux” < &n + (A(xn7 ux), Uy — ux)
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and(u,) is strongly convergent to,. O

When the operatod does not depend on the parametave obtain:

PROPOSITION 2.9 bisAssume tha#l is monotone and hemicontinuous &n a
closed convex subset Bf Then(V 1) is strongly well-posed if there exists a point
ug € K and a functionc : D — [0, +oo[ (where D is a set of non negative
numbers such tha@ € D) with the following properties¢(0) = 0 andc(z,) — O
impliesz, — 0and such that:

(Av,ug —v) +c(lug—v]) <0 Vvek. (5)

Consequently, ifA is a strongly monotone and hemicontinuous operator, theh
is strongly well-posed.

Proof. From (5) and Minty’s Lemma it follows thaty is a solution toq(V 1) and
any solutioni for (V I) must coincide witheg since:

0 < c(lluo — ull) < (Au,u —ug) < 0.
If (u,) is an approximating sequence ar1) it results:
0 < limsupc(lju, — uoll) < limsup{Au,,, u, —ug) =0

n—oo n—oo

and(u,) strongly converges toy.
Now, let A be a strongly monotone and hemicontinuous operator ard3ieD
such that

(Au — Av,u —v) > aflu —v||?> forallv e E.

Letuo be the unique solution 10/ 1), then(Av, ug—v)+oa|lv—ug||?> < (Aug, ug—
v) <0 Vo e K, so there exist the functiarn(r) = at? andug € K satisfying (5).

3. Well-posed OPVIC

In this section we consider the problem OPVIC, presented in the introduction, with

f bounded from below oX x K.

First of all, let us define a concept of approximating sequence for OPVIC which
generalizes the concept used in Morgan [13] for Optimization problems with con-
straints defined by a parametric minimum problem (also called Bilevel Program-

ming problems or Stackelberg problems).
DEFINITION 3.1. A sequencé(x,, u,)) iS an approximating sequence for the
problem OPVIC if:

@) liminf £ (x,, u,) < inf fx,u);
n—oo (x,u)eXxE,ueT (x)

(ihu, € T(x,, &,) with lim ¢, =0.
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Then two natural concepts of well-posedness for OPVIC arise:

DEFINITION 3.2. The problem OPVIC is generalized well-posed if:
(i) (VI)(x) has a unigue solution for everye X;
(i) OPVIC has at least a solution;
(iii) any approximating sequencéx,, u,)) for OPVIC has a subsequence con-
vergent inX x (E, s) to a solution to OPVIC.

DEFINITION 3.3. The problem OPVIC is strongly well-posed if:
(i) OPVIC has a unique solutiofx, uz);

(i) any approximating sequencéx,, u,,)) for OPVIC converges tox, u;) in
X x (E,s).

Taking into account Section 2, we are able to determine classes of problems
(OPVIC) which are generalized or strongly well-posed. More precisely, we have:

THEOREM 3.4. Assume thak is sequentially compacy; is lower semicontinu-
ous onX x (E,s), the family (V1) is parametrically strongly well-posed and
OPVIC admits at least a solution. Then the problem OPVIC is generalized well-
posed.

Proof. Let ((x,, u,)) be an approximating sequence for OPVIC. Thgne
T (x,, €,) wWith lim,_, ., ¢, = 0. BeingX sequentially compact, there exists a sub-
sequencex,, ) converging toxo € X. Then(u,,) is an approximating sequence
for the problem(V I)(xo) (with respect tax,,) and, sincg V1) is parametrically
strongly well-posed(u,, ) strongly converges to,, = T (xo), the unique solution
of (VI)(xo). Moreover, from Definition 3.1, we have:

. < . _
IIm)IOrgf S s ) S (x,u):e)I(QfE,ueT(x) S u) )!rg(f(x, 7).

Then:
S (xo, uyy) < Ii][ninf S Xy ) < in}‘( S, T(x))
— 00 xXe
and (xo, u,,) is a solution to OPVIC. O

THEOREM 3.5. Assume thak is sequentially compact, is lower semicontinu-
ous onX x (E,s), the family(VI) is parametrically strongly well- posed and
OPVIC admits a unique solutiotx, uz). Then the problem OPVIC is strongly
well-posed.

Proof. Let ((x,,u,)) be an approximating sequence for OPVIC. Argueing
as in Theorem 3.1 there exists a subsequence, u,,)) of ((x,, u,)) such that
((xn, , uy,)) converges t@x, uz). Since any converging subsequence of the approx-
imating sequenceé(x,, u,)) is convergent tax, uz) in X x (E,s) it is easy to
prove that the whole sequen¢g;,, u,)) converges tax, uz). O
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Consequently, assuming thitis sequentially compact, we infer the following
corollaries:

COROLLARY 3.6. Let E be a finite dimensional space. Assume thAais an
operator onX x K such that for allk € X A(x, .) is monotone and hemicontinuous
and, for allu € K, A(.,u) is continuous. Leff be a lower semicontinuous real
valued function orX x E. Finally, assume thatV I)(x) has a unique solution for
all x € X. Then the problem OPVIC defined by:

Minimize f(x, u)

(OPVIC) i subject to(x, u) € X x E andu € T (x).

is generalized well-posed. If, moreover, it admits a unique solution it is also well-
posed.

COROLLARY 3.7. Let f be a lower semicontinuous real valued functiondox

(E, s). Assume thati is an operator strongly monotone in the second variable,
uniformly with respect ta, such that for allx € X A(x, .) is hemicontinuous on

a bounded closed convex sub&ebf E and, for allu € K, A(., u) is continuous
from X to (E*, s). Then the problem OPVIC is generalized well-posed and, if it
has a unique solution, it is also strongly well-posed.

When the operatoA does not depend onwe obtain:

COROLLARY 3.8. Let f be a lower semicontinuous real valued function on
X x (E,s). Assume thatd is a strongly monotone and hemicontinuous oper-
ator on K or, more generically, that there exists a poug € K and a function

¢ : D — [0, 4+o0[ as in Proposition 2.9 bis such that (5) is satisfied. Then the
problem OPVIC is generalized well-posed and, if it has a unique solution, itis also
strongly well-posed.

EXAMPLE 3.9. As pointed out in the Introduction, any method which produces
approximating sequences for OPVIC allows to approach a solution. As an example
we show that the sequencéx,, y,)), generated by the exact penalty method,
described by Marcotte and Zhu [11], is an approximating sequence for OPVIC.

In fact, following Marcotte and Zhu, we consider the penalized problem

Minimize f(x, u) + ag(x, u)

(Po) .
subject to(x, u) € X x E,
whereyg is the gap function defined in (1) and we suppose that, far &l0, (P,)
has at least a solution.
Let («,,) be an increasing sequence of positive numbers(andy,,) be a solu-
tion to the problem7,,). From Lemma 1 in Marcotte and Zhu we have:

(1) f e, yn) < infeyexxe fx,u) <infimexxeuere fx, u);
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(2) g(xn-i-l’ yn+l) < g(xn’ yn)

which imply i) and ii) of Definition 3.1 s@(x,, y,)) iS an approximating sequence
for OPVIC.

Then, whenever OPVIC is well-posed (respectively generalized well-posed) we

can deduce that the sequeri¢e,, y,)) converges to the solution (respectively that
a subsequence 0fx,, y,)) converges to a solution).
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